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Gζ=0=Geq

Phase Transformation
1.Diffusional
- Require movement of atoms by a diffusion process driven by a chemical potential gradient

a.Nucleation and growth
b.Spinodal decomposition

2.Displacive (Non-diffusional)
- Involve cooperative movement of atoms in a shearing action during phase transformation
e. g., Martensitic transformation in steel

ΔG >0  the equilibrium is stable
ΔG =0  the equilibrium is neutral
ΔG <0  the equilibrium is unstable
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- Stability condition with respect to infinitesimal fluctuation
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 has a value which is different from zero, it is 

possible to choose a value ofζ so as to makeΔG negative. 
Consequently, if the equilibrium is unstable. If 

it is zero, the equilibrium is stable when
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- Stability criteria for local compositional fluctuation
GM < GC Decomposition
GM > GC No Decomposition
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Spinodal point separating 
stable and unstable regions
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-Small fluctuation, CA+B, and
GC<GF, energetically unfavorable

-Large fluctuation, CA+D and 
GC>GE, energetically favorable

-Nucleation and growth 

∂
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x

(a) Unstable region
G4
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G3 < G4

- No energy barrier for decomposition
- Kinetics controlling process
- Spinodal decomposition

(b) Metastable region
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(c) Stable region

U: Unstable
M: Metastable
S: Stable



↓

↓

E: the minimum work 
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Mechanical 
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a large fluctuation
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Bright field image

Dark field image
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RY Tsai, 2017

Spinodal decomposition of V0.7Ti0.3O2 annealed at 450oC for 7 days in N2



Spinodal Decomposition
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Composition fluctuation

The change in Gibbs free energy accompanying the 
composition fluctuation
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Down-Hill Diffusion

Up-hill Diffusion
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Regular Solution
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Regular Solution
ΔHm=PAB(1/2(εAA+εBB)-εAB) =PABε

PAB=((1/2)ZNo)(2XAXB)
=ZNoXAXB : Probability to form A-B bonds

ΔHm=ZNoXAXBε=ZNoεXAXB=ΩXAXB

Ω=ZNoε
Ω<0 attraction between unlike ions

 1/2(εAA+εBB)<εAB
Ω>0 repulsion between unlike ions

 1/2(εAA+εBB)>εAB

For Ideal Solution
1/2(εAA+εBB)=εAB
ε=0Ω=0ΔHm=0
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Spinodal line is determined where
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 Spinodal parabola

Critical point is determined where




m

B
2

m
2
B

∂ G = 0
∂X

∂ G = 0
∂X

C C
B B

C
2X (1-X )ΩT =

R
TC>0 Ω must be positive

3
m

3
B

→∂ G = 0
∂X

XB
C is such that TC is the maximum 

decomposition temperature associated 
with the miscibility gap
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Nucleation

Supercooled
Liquid

Homogeneous 
Nucleation

Liquid

Solid

Heterogeneous 
Nucleation

Liquid

Solid



Freezing Water

Nucleation and Growth

Grain

LiquidLiquid
Nuclei

Grain 
Boundaries

Crystals to form grains



Phase Transformation in Pb-Sn Alloy System



Fraction of Molecules at Surface 

I            I             I            I         

‐

‐

‐

‐

‐

‐2          ‐1            0          1           2

25

20

15

10

5

0

Pe
rc
en

ta
ge

 o
f m

ol
ec
ul
es
 in

 th
e 
su
rf
ac
e 
(%

)

log(d) (um)

AgBr with a molar volume of 30 cm3/mol 
and a molecular dimension of h=0.37 nm

dh

s

to t

2
s

3
to ta l

a

s

to

l

ta l

dn =  

n in creases  w ith  
n
   

6 (

  

)
h
d

   

n h= 6 (

d ecre

n = ( )
h

as i

)
n d

n g  d



Surface Tension 
& Energy

Unbalanced forces for the molecules at the surface yield 
an excess free energy which is called Surface Energy

, ( )T P

dG SdT VdP dA
G
A





   


 


The surface stays under a tension or a 
stress (force per unit length, or work 
per unit area) which is called surface 
tension (γT)

F:force; L:length
W:work; A:area

T
F dW
L dA

  



oG=G +γA

dG= γdA+Adγ

W(work)= Fdx
Surface tension(γ )=Force/unit length = F/L
Then W = γ Ldx = γ dA (work done on the system)=dG
γ dA = γdA+Adγ

T

T

T T

T

dγγ  = γ + A
dA

The free energy of a system containing an interface of area A and excess free 
energy per unit area (surface energy: γ) is given by  

where Go is the bulk free energy.

For a liquid film suspended by a wire frame, 
which is moved by a force of F 

For liquid: Since the surface is unable to support shear stresses, the atoms within 
the liquid can rearrange during the stretching process and thereby maintaining a 
constant surface structure and energy; i.e., dγ/dA=0  γT=γ
For solid: Since the atoms take much longer to move from the bulk to surface,
the surface structure and energy will be changed when it is under stress. If this 
time is long in relative to the time of the experiment then dγ/dA≠0 γT≠γ.
At temperatures near the melting point, however, γT=γ because the mobility of 
atoms is fast enough to restore surface structure. 

F

XdX

L



Broken-bond Model for surface energy

1120961Ag
13901063Au
17201084Cu
20801536δ-Fe
22801769Pt
26503407W

1080660Al
680232Sn

γSV (mJm-2)Tm(oC)Metals

Average Surface Energies

H2O: 72 mJm-2



Interface of Solid/liquid 

At the interface of solid/liquid, the 
inter-atomic bonds become gradually 
weakened, which increases the disorder. 
At equilibrium (e.g.,TM), the high enthalpy 
of liquid is balanced by a high entropy so 
that both phases have the same free 
energy. In the interface, however, 
the balance is disturbed thereby resulting 
in an excess free energy of γSL. 
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2091555Pd

2551452Ni
2061220Mn

2341490Co

33327Pb

126961Ag
1321063Au
1771084Cu

2041536Fe

2401769Pt

93660Al

54232Sn
γSL (mJm-2)Tm(oC)Metals

Experimentally measured solid/liquid 
interfacial free energy



r

dr

ΔP

Work of expansion on the gas (ΔPdV)
=the reduction in surface energy (dA)

dA= ΔPdV ΔP= dA/dV
dV=4πr2dr, dA=8πrdr

ΔP= (8πrdr)/4πr2dr
=2/r (Young-LaPlace Eq.)

Effect of Curvature

1441.440.01440.0014ΔP (atm)

0.0111001000Radius 
(μm)

ΔP for water droplets of different radii

Stability of Droplet



Po

M

A

A A

M
A

o o
A A o A

M M
A A

M M
A

A

A

M

A
o
A

o
A

V :molar volume of species A

: Chemical potential 

At constant T   dG=V dP     

ΔG =G (P) - G (P ) = G (r) - G ( )

        = V dP V (

2 V
(r) - ( )

P-P )

2
      

=

 V P=V ( )

( )         

o

P

oP

r

r




















under a flat surface

• Chemical potential increasing with decreasing particle size
• Smaller particles exhibiting higher solubility.

Ostwald Ripening (Coarsening): Larger particles grow at the expense of 
smaller particles

Effects of Curvature

r
P



Precipitation from Homogeneous Solutions 
(PFHS)

• Approaches
•Conductivity 
•Turbidity 
•Particle size measurement
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Effect of Curvature

β(∞)

β(r)
α



Effects of Curvature on Solubility of Particles

Decreasing Positive 
Curvature 

Decreasing Negative 
 Curvature

-10             -5             0              5               10

2x radius of curvature (nm)

SiO2 solubility ppm
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e.g., γ =0.5 J/m ; V =2.5x10  m /mol; T=1000K
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Homogeneous
Nucleation

Condensation
Vapor  Liquid

e. g., Supersaturated Vapor→Liquid (V→L)
Assumption: A small liquid droplet has thermodynamic 

properties similar to bulk liquid

Isothermal transformation at constant pressure in one 
component system

dG dA dn  

i idG SdT VdP dA dn     

T TE
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VaporLiquid
- gl and gv : free energy per atom in the bulk phases

ΔT



Vapor

G1
vapor

vapor Liquid1 V= (V +V )GG
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Vapor

Liquid

G2

vapor liquid
vapor V liquid V LV LV2 = VG G +V G +A 

liquid vapor
r liquid V V LV LV
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liquid 2
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uid V

ΔG = - = V (G -G ) +A
4πr

= ΔG + 4 r
3
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π

G γ
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V:volume

Total volume = Vvapor+VLiquid

Condensation



Assuming that the liquid droplets are spherical and isotropic
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where Vl: volume per atom in the liquid state, r: the radius of 
liquid droplet, n: number of atoms in the liquid droplet, and 
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γ
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Replacing eq. (2) into eq. (1)
3 2

v 2
16
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γ (3)

2
24 1(4 )3 3

LV
LVC

rG r    
Replacing eq. (2) into eq. (3)

Critical free energy =1/3(total surface energy) 
vlG VdP g g   

ideal gas:
RTV
P



gl and gv : 
free energy per atom 
in the liquid and vapor
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Freezing
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ΔG = ΔH - TΔS
At T → ΔG = ΔH - T ΔS = 0

At T → ΔG = ΔH - TΔS =

S =
T

If ΔT is small and if ΔH and ΔS do not 
change significantly with temperature
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Freezing or Solidification

As T = TM, ΔT = 0, then rC —>∞ and ΔGC —>∞, barrier for nucleation is 
infinite at TM, implying that supercooling is needed for Homogeneous 
Nucleation. For example, a liquid nickel can be supercooled by 250K below 
TM (1453oC) without solidification, or pure water can be supercooled to as 
low as -42oC without being frozen into ice. 



Effect of Undercooling

ΔT2 > ΔT1
rC2 < rC1
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Size Distribution of Nuclei

r r

0

n Δ G= exp(- )
n R T

n0: number of clusters having atomic radius
nr: number of clusters having radius of r
ΔGr: formation free energy of clusters with 

a radius of r

Undercooling (ΔT)
Required for 
Homogeneous 
Nucleation

Clusters having a radius of r
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r r

0

n Δ G= e x p (- )
n R T

Example: Ni  Tm=1725K, ΔHm/Tm=-10 J mol-1K-1,γLS=0.25 J/m2, 
V (Molar volume) = 7 cm3/mol 
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ΔGn = n exp(- )
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= 7.3x10 clusters / cm
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Maximum cluster radius rmax
as a function of temperature
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Too low concentration Homogeneous nucleation does not take place
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Homogeneous Nucleation Rate
C C0I=q O Z

I = nucleation rate
qo = jump frequency 
OC = area of critical nucleus
ZC = number of critical nucleus
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1 (equilibrium distribution), 0.Since n n IZ Z  

Volmer Theory
Assumptions

(1) Bimolecular process

(2) Neglect the reverse reaction between embryos (irreversible process)
Note: If reversible process is considered, I=0



:the statistical distribution function 
for embryos containing n atoms

N: number of atoms in the vapor phase
ΔGn:the standard free energy change resulting 

from the conversion of vapor into embryos

I:  nucleation rate (sec-1)
qo: probability per unit time 

per unit area of capturing 
one vapor atom

OC: area of critical nucleus
ZC: number of critical nucleus
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(The number of embryos at a given size 
should remain effectively constant 
although embryos might grow or shrink
in size (the probability for either 
direction is equal)

0 0 1 1 0C C C CI q O Z q O Z   

0
0

n n

n

n Z N
n Z
 
 


 


1 -1C 2 C

C0 C
GO NexpGI= ( ) N (- )3πkT kTq

0 2
Pq
MkT






OC= area of critical nucleus

Becker-Doring Theory
Assumptions
(1) Bimolecular process
(2) Reverse reaction considered

(3) Embryo distribution
-steady state

Volmer

B-D

Nc

Nn

nC

C 
CnN N (n: # atoms/cluster)

nN
n: 

#
cl

us
te

rs
 w

it
h 

 n
 a

to
m

s

Volmer

Becker-Doring



Δgn～10 kJ/mol in liquid metals
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LiquidSolid: Nucleation of solid from liquid
- Kinetic theory of gaseous collision is no longer applicable
- q0 replaced by diffusion in liquid

Δgn
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Θn+Θ1 Θn+1

ΔG

Qn + Q1  Qn+1

Γ= ZωPv

e x p ( )mG
R T

   



2
0

V
2
0

25 2 16 2 22 3
0

V 33

3 3 3 3

2
2

V
3 3 2

33

,

I exp( )

10 , 10 , 10sec

I 10 exp(

V

)

4 4
27(

33

) 27( )

4 ( )10 exp[
2

I
7

:

I 10 exp( )

C

C

C
mv

m

m
v

m

m

kT D a
h

GDN
a kT

cmD a cm N cm

G
kT

G H TG
T

C

H TG
T

For solidification

T
kT

Note

G
kT

 

 



  

 


  

  


 

  
 

 
 

  


 



γ γ

γ
2 2 ]

( ) ( )mH T 

2
v oD P wa



-40

-30

-20

-10

0

10

20

0 50 100 150 200

Lo
g(

v I
) 
(s
ec

-1
)

ΔGc (kT)


 3310 exp( )V CGI

kT

Homogeneous Nucleation

ΔGc
hom <60-70 kT




 



 
   

3 3

2

4
27 ( )C s l

s l

V
m

m

G
g g

H T
G g g

T

γ
LiquidSolid

V

3 3 2

2

3 3

22

4
27( )

I exp( )

4
( )27( )m

m

m

nC

C

m
TA

H
G gkTN

h kT

AG H T T
T








  
  

    

γ

γ

Mobility term:  ng
kT

Formation term:  2
A

kT( T)

V α 


n
2- g Aln( I) +kT kT( T)

Controlled 
by jumping

Controlled by 
formation of 
nuclei



V

28 22 2 8 2 15
0

I exp( ) exp( )

10 , 10 , (3 10 ) 10sec

exp( )

m C
C

o

G GO N
kT kT

cmD N a

kTq
h kT



  

 
   

  

 

 



  mG

29
2

C C

0

GN D = Gexp(- ) exp(- )
kT

10
a kT

T

Te

exp( )cG
kT

 


(Formation)

exp( )mG
kT

 


(Kinetic)

Nucleation Rate

SolidSolid



Phase Transformation in Solids
e.g., α β

The total interfacial energy (γinterface) is the sum of surface energy contributed by
chemical bonding at interface (γCh) and the strain energy (γSt). 

a a a a
a a

   

 


 

 

where  c is the elastic constant and ε is the relative strain due to lattice mismatch.

2 3 2
interface
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Coherent Interface
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: concentration gradient
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Gibbs free energy of an atom in a concentration gradient is not the same 
as the Gibbs free energy of that atom in a solution of uniform concentration

2( )dX
dx

 

Interfacial free energy is proportional to (composition gradient)2
Regular Solution
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Uniform concentration

Excess Gibbs free 
energy resulted from
a non-uniform concentration

(Z=12)
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Semicoherent Interface
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Incoherent Interface



For very small particles (though still larger than rc ), the term of strain 
energy is smaller than the surface energy (chemical contribution), and total 
interfacial energy is small (due to the limited surface area, and thus the 
limited number of interface chemical bonding), thereby it is energetically 
favorable to maintain coherent. 

Effects of interface nature on Nucleation and Growth

Diffusion normally occurs by a vacancy mechanism in substitutional solid solutions. 
In the case of the formation of a precipitate, a reconstruction of the lattice occurs, 
where involves the creation and annihilation of vacancies, if the interface is 
semicoherent or incoherent. However, if the interface is coherent, no such 
vacancies processes involved. The concentration profile across precipitate/matrix 
interface for the three different interfaces are shown below:

Boundary migration mobility (M)
M (coherent) < M (semicoherent) < M (incoherent) 

Coherent
(Reaction Controlling) (Mixed Controlling) (Diffusion Controlling)

Semicoherent Incoherent
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Homogeneous Nucleation in Solids
Effects of Strain Energy (ΔGS)
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Heterogeneous Nucleation

Nucleation of CO2 bubbles around a finger
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-Impurities or strained regions of lattice enable nuclei to be 
formed with a much smaller free energy of activation than 
that of homogeneous nucleation

• phase in contact with a solid phase of S, 
andβphase formed at the interface

-Assuming σβ is isotropic
-The volume of embryo = ηβr3 and the     
surface area of contact with the α phase = 
ηβr2, whereηβ and ηβ are shape factors.

-The free energy of formation is

σβS
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Note: The key difference between heterogeneous and 
homogeneous nucleation rates
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Growth (without composition change)
e.g., Crystal growth

I.Normal growth (continuous growth)
- Wilson-Frenkel model
- Every site is a growth site, or there is a constant number of growth sites
- Number of growth sites≠f (T)
- Rough interface on atomic scale (micro- roughness)
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(1) For small under-cooling (ΔT0 and ΔGV is small)
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Growth rate is proportional to under-cooling when ΔT is small

(2) For large under-cooling  VV G kT 

2
0 ( )exp( )a DG Du kT      

Velocity of interface approximated by wave equation
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(1) Small undercooling
ΔT0,  u  ΔT

(2) Large undercooling
u  D/

 D


 T 

u

T

Controlled 
by jumping

Controlled by 
formation of 
nuclei



Grain Growth



60oGrain Growth



Grain Growth

The arrows indicate the 
directions in which grain 
boundaries migrate.
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II. Lateral Growth 
(1)  Spiral Growth
- Interface is smooth on atomic scale, 

but imperfect
- Growth takes place only at the dislocation 

ledges; the fraction of preferred growth 
sites on the interface in growth from the 
melt is approximately by 

(Hilling & Turnbull, J. Chem. Phys. 
24, 914 (1956))



exp( )Cu A
T T

 


(2) Surface Nucleation

- Interface is smooth on atomic scale  
and perfect

- Growth takes place at step sites             
provided by two-dimension nuclei  
formed on the interface

where A and C are constants 
depending on specific models.

(a)

(b)



Small ΔT 
(1) Normal growth, u  ΔT
(2) Spiral growth, u  (ΔT)2
(3) Surface-nucleation growth, u  exp(-1/ΔT), 

which requires (ΔT)C
Q: Can we predict whether a given material will have 

a rough or smooth interface?
If so, we have handled the kinetic models.

Note:  Nucleation is required on smooth surfaces, but not for rough or imperfect surfaces

Interface undercooling (ΔT)
Gr

ow
th

 r
at

e 
(u

)

Continuous growth
(rough interface)

Spiral growth
(smooth interface)

Surface nucleation
(smooth interface)



Faceted dendritic
growth in tertiary 
butyl alcohol

Faceted growth 
in benzil
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ΔS/R=6
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Jackson model of a crystal interface
Ref: K.H. Jackson, “Mechanism of Growth”, in Liquids, Metals, and 
Solidification, ASM, Cleveland, 1958, p174-186.
-Thermodynamic Approach: similar to regular solution

N: the total number of surface sites
NA: the number of occupied surface sites

ΔHf: Latent heat of transformation
fk: Crystallographic factor
-Fraction of all nearest neighbors lying in the plane 
parallel to the face under construction, e.g., (111) in 
FCC: 6 bonds out of 12 in plane, fk=0.5.

m m

A A B BA B

m ΔH
ΩX

- TΔS
       +RT(X lnX + X lX
Δ =

= nX
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In other words,  depends upon
(1) Crystallographic factor (fk)
(2) Thermodynamic factor (ΔHf/Te)

which can be used to predict “roughness of surface”.

Equation (*) varies with  as

-The lowest free energy occurs when half the available
surface sites are filled, i.e., NA/N=0.5. This is a
“rough” surface. 

- Little anisotropy in growth rate
- Normal growth non-faceting
-Micro-roughness  macro-smoothness
-Diffusion-controlling process mostly

0<<2
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Low  High 

Micro-roughness
Macro-smoothness
Non-faceting

Micro-smoothness
Macro-roughness
Faceting

-The lowest free energy occurs when there are new extra atoms on the plane 
and a few atoms missing from the plane below.  This is a “smooth” surface.

- Surface nucleation required
- Growth rate → anisotropy → faceting
- Macro-roughness  micro-smoothness
- Interface-controlling process mostly

>2

High Low 
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- Most metals in solid-liquid transformation
- Inorganic glass formers such as 
SiO2 (=0.6) and GeO2 ( =1.3)             

2f

E

H
RT


 - Most organics on solidification
- Multi-component inorganic 

glass/metallic oxide systems
2 2

2 3

2 ( 4)
2 ( 30)

Na O SiO
PbO B O




 
 

Tri-α-naphthylbenzene ( 10.7) 
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 - Semimetals

( 2.2), ( 2.4)Ga Bi  

2( 3.24), ( 3.0), ( 2.63)Si Ge H O    

3 , 2
4kf  

-For small ΔT, both grow with large flat surface 
faceting

-At large ΔT (30K for Ge and 90K for Si) flat surface 
disappears roughness in the form of dendrites. 

- Elementary semiconductors

e.g., (111) faces of Si and Ge



ΔS/R=7.46

(a) (b)

(c)
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: the total number of nearest neighbors

        

FCC  (111)  
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Si, Ge, Sb, Ga from the melt     

: entropy change on cryst

Metals from the melt                    1

Many organic compounds           
   3

Metals from the vapor   
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Polymers   
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 >100

Low entropy change High entropy change



Te  T2

   + β
Composition change

Xo  Xe + Xβ (ΔX=Xo-Xe)
Total free energy change: ΔGo

To nucleate β in  phase, however, the 
composition does not change significantly

Xo ≈ Xo


Free energy change: ΔGn (nucleation)

At point P: per mole of β removed from 
 phase

At Point Q: per mole of β formed
P B BA AG X X     

B BQ A AG X X      

( ) ( )B BP BA AQn AXG XG G            
:Driving force for nucleation

Homogeneous Nucleation in Solids
with Composition Change

ΔGn



Effects of Interfacial Strain Energy 
on Homogeneous Nucleation in Solids

(Strain energy)

(Critical energy 
barrier)

(Driving 
force)

(Nucleation
rate)



Effects of Alloy Composition 
on Nucleation Rate



Effects of Undercooling on 
Heterogeneous Nucleation Rate



Growth Kinetics with
Composition Change



Diffusion Controlling Growth with Composition Change
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Diffusion Controlling Growth 
with Composition Change
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The same area (Accumulation = Depletion)

: molar fraction
: thickness of precipitate
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Reaction Controlling Growth Kinetics with Composition Change
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KS: Reaction rate constant at the 

interface of /β, assuming 
first order chemical reaction
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Age Hardening of Al-Cu Alloys

Precipitation 
Hardening

Time

Coarsening
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β
β

V = 1 - e x p (-k t) = X   (V o lu m e fra c t io n tra n s fo rm e d )
V

d V = k (V - V )d t

1.J. W. Christian, p15-22, (1975).
2.Johnson and Mehl, Trans. AIME, 135, 416 (1939)
3.Avrami, J. Chem. Phys., 7, 1103 (1939); Avrami, J. Chem. Phys., 8, 212  (1940);  

Avrami, J. Chem. Phys., 9, 177 (1941)
4.Burke and Turnbull, Prog. In Metal Phys., 3, 220 (1952)

Isothermal Kinetics of Transformation by Nucleation and Growth

In a homogeneous reaction, the volume transforming in a short time interval is 
proportional to the volume remaining untransformed at the beginning of this interval,
and this leads to a first order rate reaction process.  
For a reaction α→β

Goal: Develop kinetic equations for volume fraction transformed (X vs. t)
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sigmoidal curve

I : Incubation
II : Growth
III : Impingement

where V is the total volume, Vβ is the transformed volume and k is the rate constant.
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III Impingement
II  Growth
I   Incubation



∵ Vβ<<Vα, V≈Vα

at early stage of transformation

Formal Theory of Transformation Kinetics

- Randomness of active nucleation sites
- VI (Nucleation Rate) = number of nuclei 

formed per unit volume of α per unit time
- Number of particles formed betweenτandτ+dτ=vIVdτ

where τis an incubation time.
- Volume of each β particle formed is
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t V

t V u t








 

 

  
assuming that u is constant in time, which is true for 
the system without composition change.

At early stage of transformation, Vβ<<V and impingement can be ignored, 
and volume of βphase increases as

V IV V dd V 
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V V V  

Assuming that VI and u are constants

V 3 4I
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:V 
 Volume of each β particle

vIVdτ: number of particles formed

 β



Mutual interference or impingement need to be considered at 
later stage of transformation. In this case, there are vIVdτ
newly transformed regions nucleated in the α area, and vIVβdτ
newly transformed regions nucleated in the β area, and 
Arvami called vIVβdτ as phantom nuclei and defined an
“extended volume” of transformed material eV 
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fraction of increment due to 
transformation occurring in α
phase

Ve
β differs from the actual volume of transformed materials:

(1) it counts phantom regions, nucleated in already transformed area
(2) treating all regions as though they continue growing irrespective of  

other regions
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Substituting into     
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Note: In general, vI is not constant, but may either increase or decrease with time.

(assuming vI and u are constants)

Early stage of transformation (t0)

Avrami assumed that nucleation rate was not fixed  
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vNo: number of nucleation sites
per unit volume initially



3-Dimension, spherical
vI and u are constant,
n=4 in X=1-exp(-ktn)
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(**)

Integrating by parts gives

Two limiting cases
(1) νt is small, implying that vI is constant

2 2 3 3 4 4 5 5

1 .....
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0 0I, (t) exp( )v vsmall t N t N     

 the same as that of constant vI and u.

3 3

6
t

(2) νt is large, indicating that vI goes to zero quickly. All nucleation 
centers will be exhausted at early stage of the transformation

Eq (**) becomes
2 2 3 3 3 3

:  exp( ) 1       ( exp( ) 0 when  is large)
2 6 6
t t tNote t t t            



3-Dimension, spherical
vI=0,and u is constant,
n=3 in X=1-exp(-ktn)v 3 3
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Avrami proposed that a 3-D nucleation and growth process, the equation of 
transformation kinetics is

1 exp( )
1 exp( ( ) )

n

n

X kt
or X kt

  

  

where 3≤n≤4.  This should cover all cases in which vI is some decreasing function 
of time, up to the limit when vI is constant. 

Note that the above equation (*) is similar to chemical reaction kinetics of
many heterogeneous systems
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 Nucleation is rapid, and X is controlled by growth.

(*)



Diffusion-controlling Growth
(Parabolic growth, 
x=kt1/2, and u=kt-1/2/2)

3-D: Volume of transformed region =
2-D: Volume of transformed region =
1-D: Volume of transformed region =
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n (Zero vI)n (Constant vI)

Reaction-controlling Growth
(Linear growth, x=kt, and u=k)
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Parabolic Growth

, 

3-D

vI is constant, u α t-1/2

vI=0, u α t-1/2, number of nuclei=N0
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volume of transformed region=
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Linear Growth 

3-D

vI, and u are constant
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vI=0, u=constant, number of nuclei=N0
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distribution

Zero vI, 
Narrow size 
distribution

Impingement



Time-Temperature-Transformation (TTT) Curves

1 exp( )nX kt  



1 exp( )nX kt  

Constant vI and u

Zero vI but constant u
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Time-Temperature-Transformation (TTT) Curves
Continuous Cooling Transformation (CCT) Curves
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-Small fluctuation, CA+B, and
GC<GF, energetically unfavorable

-Large fluctuation, CA+D and 
GC>GE, energetically favorable

-Nucleation and growth 
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- No energy barrier for decomposition
- Kinetics controlling process
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U: Unstable
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Small compositional fluctuation in the unstable area:

in the stable/meta-stable areas: 
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Spinodal Decomposition
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Down-Hill Diffusion

Up-hill Diffusion
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Spinodal Decomposition



Kinetics of Spinodal Decomposition
(1)J. W. Cahn, Acta. Meta. 9 (1961), p. 795
(2)J. W. Cahn, Trans. Met. Soc. AIME,242 (1968), p. 166
(3)J. E. Hillard in “Phase Transformation”, ASM (1970), p. 497
(4)A. K. Jena and M.C. Chaturved, “Phase Transformations”, Chap. 9 (1992)

Spinodal Decomposition
Characteristics of spinodal decomposition
(1) No energy barrier
(2) Continuous variation of composition between transformed and 

untransformed, diffuse interface between transformed and initial phases
(3) ΔHmix>0  positive deviation ( > 1)
(4) Uphill diffusion → Negative diffusivity
(5) Periodic and highly connected of transformed phases
(6) Systems: Al-Cu, B2O3-SiO2 glass, CoO-MgO, MgAl2O4-Al2O3, etc.

Characteristics of nucleation and growth
(1) With energy barrier
(2) Sharp interface
(3) Random distribution of particle sizes and position in transformed matrix
(4) Invariance of transformed phase composition with time
(5) Tendency toward spherical particles



The flux of each constituent in a binary system with a moving lattice, 
viewed from the edge of sample (stationary coordinate)
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vB: atomic velocity
XB: molar fraction
C=CA+CB: #atoms/unit volume
BA, BB: mobility
μ: chemical potential per mole
N= 6x1023

x: distance

Ji: Flux under stationary coordinate
ji: Flux under moving coordinate
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Gibbs-Duhem equation

                        :the resultant mobility of the binary system
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f: Helmholtz free energy per unit volume
g: Gibbs free energy per unit volume
C: Number of atoms per unit volume

It is convenient to use free energy per unit volume (f)
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Fick’s 2nd law
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D<0: Decomposition

D>0: Homogenization



-λis the wavelength of the composition modulation
- is the average concentration
-A(β,0) is the amplitude of the composition modulation of wave 
numberβat time zero
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"
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-A(β,t) is the amplitude of the Fourier component of wave 
numberβ at time t

-R(β) is an amplification factor
2 "( ) ( )BR fC  

f”<0 within spinodal→ R(β) >0 and the sinusoidal composition 
modulations are amplified

R(β)

βm βc

Neglect surface energy
(Classical theory)

Appreciable surface energy
(Cahn’s equations)
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The amplitude of the composition fluctuation is less at larger wavelength
because of the longer diffusion distance, and more at smaller wavelength 
because of the shorter diffusion distance.

* Strain energy or interfacial free energy has to be included.

* 0,  ,  ( )
     a continuous microstructure should be observed.
* However, is always observe1 d.0  measured
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Small λ

Largeλ



Modified diffusion equations - Effect of composition gradient
- Excess interfacial free energy existing in the diffuse interface between 
two phases

- The interfacial free energy is positive, which decreases the driving force 
for spinodal decomposition

- The interfacial free energy increases with decreasing wavelength
Helmholtz free energy of a homogeneous system

( )BF f X dV 

/BdX dx

f(XB): Helmholtz free energy/unit volume of homogeneous material with a composition XB.
Since the interfacial free energy (γ) is proportional to the square of the composition 
difference between the coexisting phases across the interface ( )
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Helmholtz free energy of an inhomogeneous system is

[ ]                      Note:
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The change in free energy due to the change in concentration of δXB

The change in free energy due to the change in concentration of δXB



Gibbs free energy of an atom in a concentration gradient is not the same 
as the Gibbs free energy of that atom in a solution of uniform concentration

2( )BdX
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Interfacial free energy is proportional to (composition gradient)2

Regular Solution
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(1) In a uniform solution

(2) With a concentration gradient
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Uniform concentration

Excess Gibbs free 
energy resulted from
a non-uniform concentration
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(1) At a large wavelength, β is small→β2 dominates and the amplification factor, 
R(β) is positive because f” is negative. R(β) tends to approach zero with 
an increase in wavelength.

(2) At a small wavelength, β is large→β4 becomes predominant, and 
R(β) tends to be negative.

Note: * Whenλis large, decreasing λ means decreasing the diffusion distance
→ R(β) increases

* Whenλis small (λ<λm), the gradient energy term is large enough to  
offset the driving force (f”), then R(β) decreases with decreasing λ.

R(β)

βm βc

Grow

Decay

Classical theory

R(β)

λC λm

Grow

Decay

" 2B f
C
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 < C

Spinodal fluctuation decays
Spinodal decomposition will not happen

However, the solid solution can still decompose
to its equilibrium state by Nucleation and Growth, 
but not by the spinodal decomposition.



Effect of coherent strain energy
- Lattice parameter in general varies with composition. Work has to be performed in 
straining the lattice if the lattice is to remain coherent in the presence of a 
composition modulation. To maintain the coherence, it will reduce the driving force 
for phase transformation.

- Coherent strain energy generally is a function of crystallographic direction, which is 
to determine the morphology of transformed phase.

-The growth rate will be the maximum in the elastically softest direction.
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-Therefore, for an alloy to decompose by spinodal
mechanism the                   must be negative as 
the surface energy term          is always positive
Consequently, the boundary corresponding to 

is defined as the coherent spinodal
at which β0, ∞ (Ignore the effect of 
surface energy).

" 22f Y
22k

" 22 0f Y 

22 Y- will be absent at high temperature which
is to be relieved by plastic deformation.

is significant only when λ is small (≈10 nm).
22k

-To grow, R(β) has to be positive.  Since β is 
inherently positive, R(β) is positive only if

.  For a system with spinodal
decomposition, κ is expected to be positive.  
Thus                     . Since Y varies with the 

direction of crystal, the temp will be maximum 
for those directions that minimize          .

" 2 22 2 0f Y k   

" 22 0f Y 

22 Y

Coherent Spinodal
2" 2 0 0f Y and      

( )R 

42 B
C


2" 2( 2 )YB fC  

2 2 2( ) ( " 2 2 )BR f Y
C

      

2 2( ) ( " 2 )BR f
C

    



" 2 2

" 2
2

" 2

* ( ) 0 2 2 0
( 2 )

2
2 0 0 Coherent Spinodal

C

C

R f Y
f Y

k
f Y

  



 

    


 

    

(1) Incoherent miscibility curve (Strain-free) f’=0
(2)Chemical spinodal curve (Strain-free)f”=0
(3) Coherent miscibility curve

f = free energy change + strain energy
f’=0

(4) Coherent spinodal curve f”+2η2Y=0
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TS is the temperature for chemical spinodal

f”(TS) = 0 at chemical spinodal
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Coherent spinodal

ΔT=Ts*-Ts

ΔT
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R(β)

βm    βc

Grow

Decay

Classical theory

R(β)

λC λm

Grow

Decay

1%

99% transformed

Time

TN

T



•T>TN  Driving force increases with decreasing temp.,βm  ΔT.
• T<TN  Mobility decreases with decreasing temp
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Q: Is it possible to suppress spinodal decomposition by quenching?
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or liquid
 Transformation time is so short, therefore, it is hard to suppress 
spinodal decomposition by quenching


